
Towards a Model of the Mapping Between English and Spanish Prosody

by Jonathan Avila

Motivation

- Speech-to-speech translation systems are already useful for short interactions but are less useful for conversations
- One reason for this is an inadequate translation of prosody the stress, rhythm, and intonation of speech
- Prosody conveys many intents and stances

Example: *Yeah* can have different interpretations based on its prosody

Research Objective

Improve the pragmatic fidelity of speech-to-speech translation for dialog by exploring cross-lingual prosody mappings

- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

Multilingual Speech Corpora

- Machine learning approaches often heavily rely on data
- Prior multilingual speech corpora consist of monologues and/or read, synthesized, or acted speech, e.g.,
 - CoVoST 2
 - mTEDx
 - Heroes
- Consequently, such data lacks
 - Spontaneity
 - Nuances of interpersonal interactions
 - Pragmatic uses of prosody

The Dialogs Re-enacted Across Languages (DRAL) Protocol

- Bilingual participants engage in a 10minute recorded conversation, mostly unscripted
- Under producer guidance, they listen to and re-enact utterances in their other language "with the same feeling"

The Dialogs Re-enacted Across Languages (DRAL) Corpus: Example

X: You're going to have your own,

Y: *Ah, that*'s *right*.

X: apartment.

Y: Already on Thursday.

X: On Thursday?

Y: On Thursday they're going to give it to me, on Thursday at three in the afternoon.

X: Are you parents gonna come, or?

X: Vas a tener tu propio,

Y: Ai, si cierto.

X: departamento.

Y: Ya el jueves.

X: ¿El jueves?

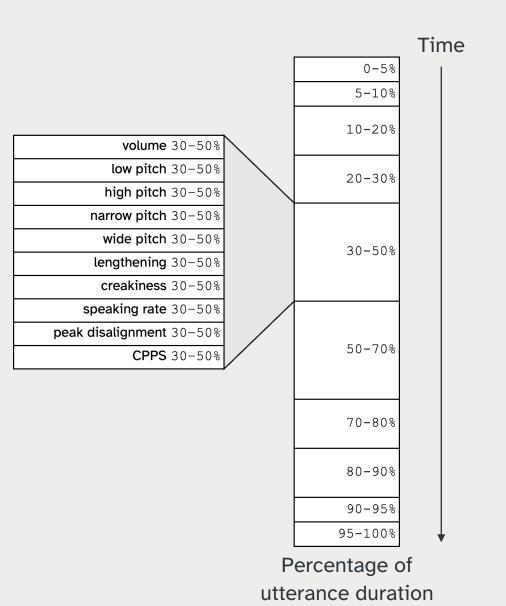
Y: El jueves me lo van a dar, el jueves a las tres de la tarde.

X: ¿Van a venir, venir tus papás para?

The Dialogs Re-enacted Across Languages (DRAL) Corpus

- 3,816 pairs of English and Spanish utterances, each produced by the same speaker
- Topics include
 - Getting to know each other
 - Sharing personal experiences
 - Discussing hobbies and interests

- Protocol and corpus detailed in technical report UTEP-CS-23-27
- Accepted by the Linguistic Data Consortium

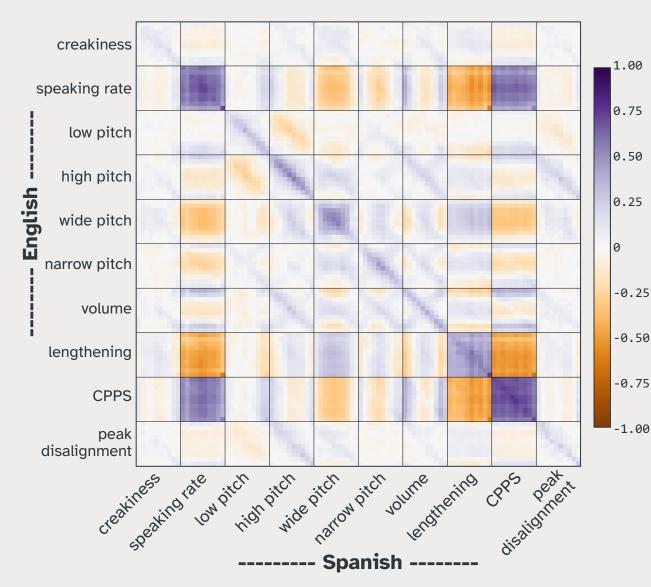

- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

Speech Representations in General

- Encode the underlying factors of speech relevant to its application, chosen based on research objectives
 - Commonly used tools for feature extraction: *openSMILE*, *Kaldi*, *Praat*
- Gap: A representation with focus on prosody from non-readspeech

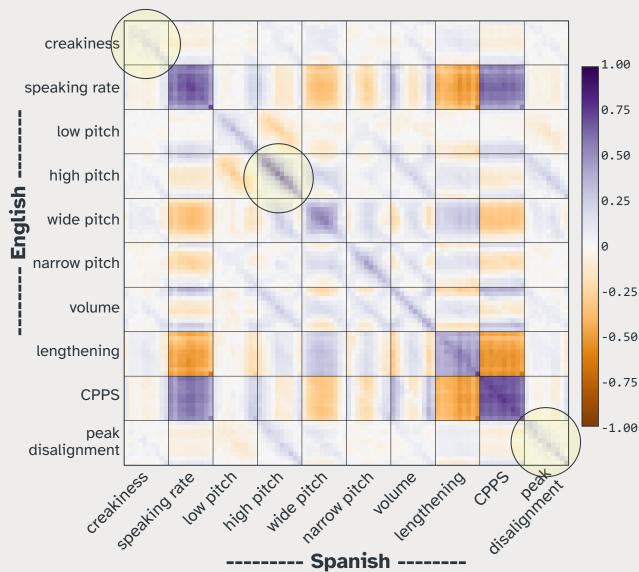
My Prosodic Feature Set

- Features are
 - robust for dialog data
 - generally perceptually relevant
 - normalized per speaker
- Ten base features computed over ten non-overlapping window proportional to utterance duration, spanning the utterance

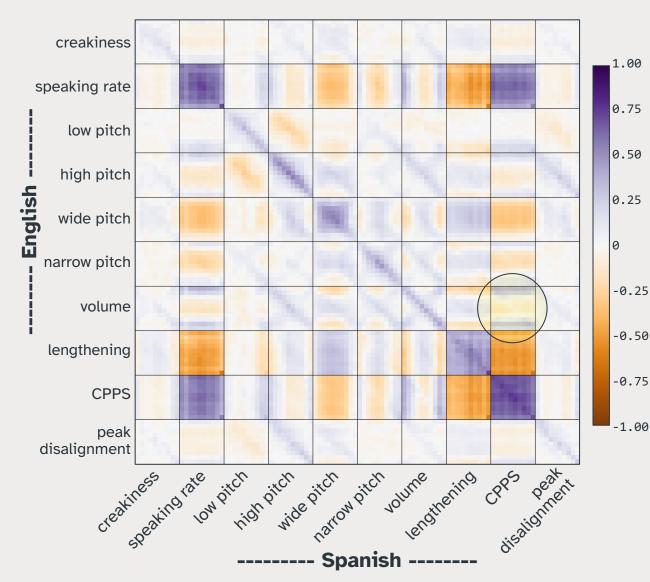


- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

Prosodic Feature Correlations

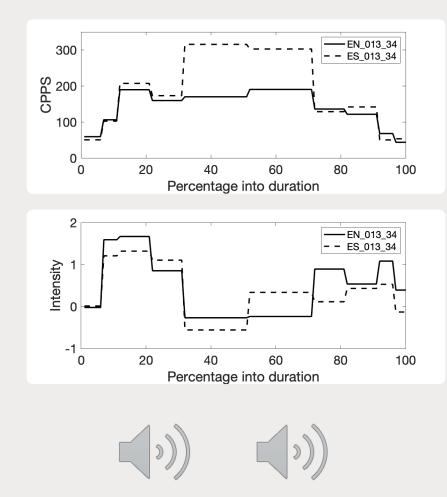

- **Purpose:** To gain a preliminary understanding of the relationship between English and Spanish prosody
- Method: Examined correlations between 100 prosodic features across all matched English and Spanish pairs in the DRAL corpus

English and Spanish Prosody: Similarities (1/2)


- Overall, English and Spanish prosody are similar
- Over half of the maindiagonal correlations are ≥ 0.3

English and Spanish Prosody: Similarities (2/2)

- Pitch highness is highly similar, particularly in the middle of utterances (e.g., 30-50%, ρ = 0.56)
- Creakiness and peak disalignment had the weakest cross-language correlations, suggesting different functions in the two languages


English and Spanish Prosody: Differences

- Some off-diagonal correlations were expected (e.g., speaking rate and lengthening) but not all
- Example: English intensity and Spanish CPPS

English Intensity and Spanish CPPS: Observations

- Ten pairs strongly reflected this pattern: high English initial and final intensity and high Spanish CPPS (nonbreathiness)
- In half of these pairs, the speaker was preparing for a follow-up utterance

- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

Speech-to-Speech Translation Evaluation Metrics in General

- Current automatic evaluation metrics (e.g., BLEU, COMET, BLASER)
 - Rely on error-prone automatic transcriptions
 - Disregard prosody, or focus on a limited range of prosodic features
 - Estimate semantic similarity, which is different from *pragmatic* similarity
- Use: Compare predicted target-language prosody with prosody of human-produced reference

My Metric for Prosodic Similarity Between Utterances

- Quantifies prosodic similarity between pairs of utterances
- Based on the inverse Euclidian distance of the utterance's prosody representations
- Values closer to zero indicate greater similarity

$$s(p,q) = rac{1}{d(p,q)}$$

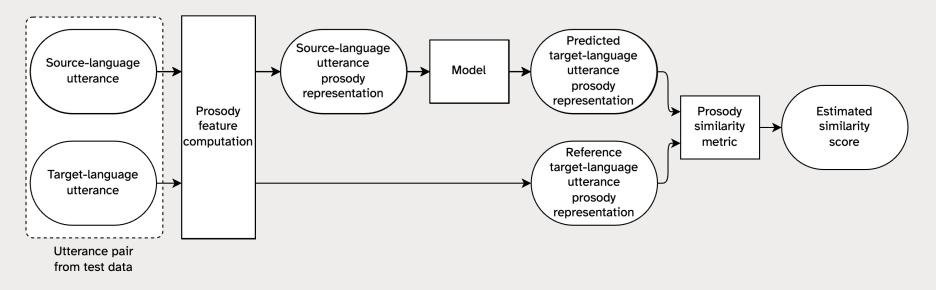
$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_{100} - q_{100})^2}$$

Where d and q are prosodic representations

Performance of Metric as a Proxy for Human Judgments

- The metric captures many aspects of pragmatic similarity, including:
 - speaker confidence
 - revisiting unpleasant experiences
 - describing sequences of events
- While some pairs shared lexical content, there was generally no correspondence between prosodic similarity and lexical similarity
- The metric performs better than chance in estimating the most similar and most dissimilar utterances (50 out of 56 estimates examined)

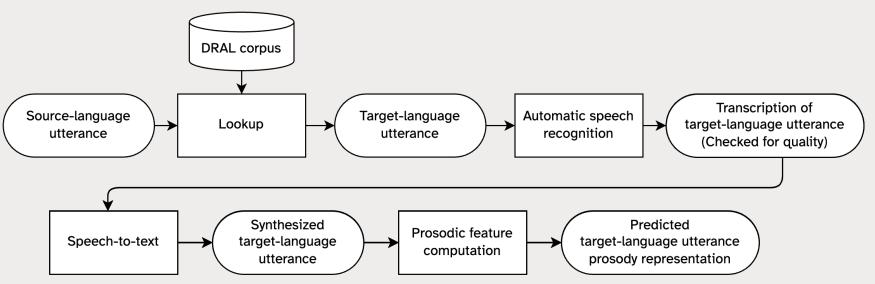
- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model


Hypotheses

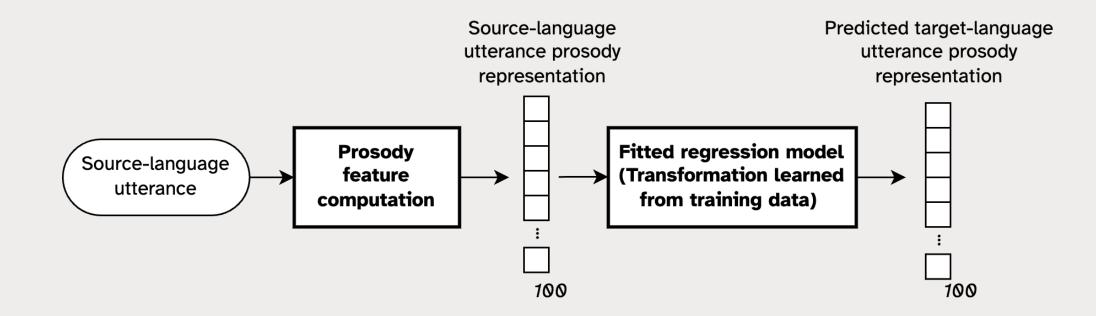
Predicting the prosody representation of a target-language utterance from cross-language patterns will yield, on average, a higher similarity compared to predicting it

- as identical to that of the source-language utterance (Hypothesis 1)
- based solely on the lexical content of the source-language utterance (Hypothesis 2)

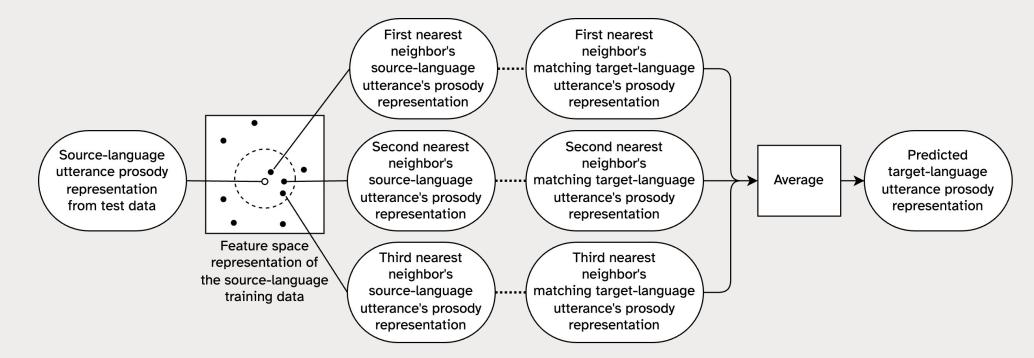
Prosody Translation Task Definition


- Task: Predict the target-language prosody representation from that of a source-language utterance
- Evaluation: Average error, determined by its similarity with the prosody of a human reference utterance

Description of Models (1/3)


Direct-transfer baseline: Predicts target-language representation as identical to that of source-language utterance

Source-ignoring baseline: Predicts target-language representation based on content of source-language utterance


Description of Models (2/3)

Linear regression model: Parametric approach, mapping English and Spanish prosodic features as a linear function

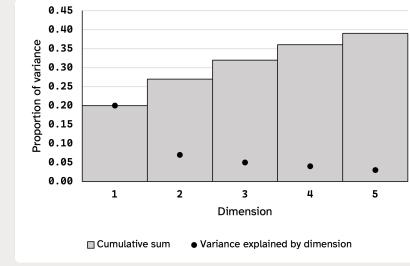
Description of Models (3/3)

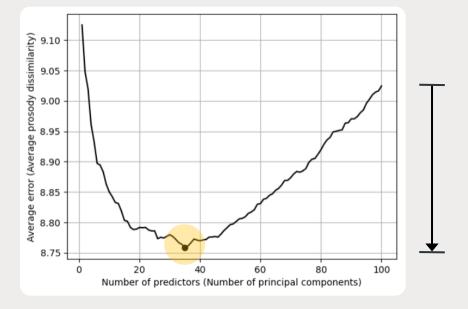
k-nearest neighbor regression model: Local approach, predicts target-language representation based on proximity in feature space of source-language representation

- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

Comparison of Model Performance

Table 6.2: Average error of prosody translation models.


Model	English-to-Spanish	Spanish-to-English
Source-Ignoring	12.65	12.32
Direct-Transfer	11.35	11.35
Linear regression	9.23	9.37


- The linear regression model outperformed both baseline models
- **Hypothesis 1 verified:** Modeling prosody as a linear relationship is a more effective strategy on average
- Hypothesis 2 verified: A simple model like linear regression can map certain aspects of prosody, so it can get better

- Protocol & corpus
- Representation of utterance prosody
- English-Spanish prosodic relationships through correlations
- Metric for model evaluation
- Hypotheses & simple models
- Results, hypotheses validation & English-Spanish differences
- A better model

Improved Model: Linear Regression After Dimensionality Reduction

- Principal Component Analysis (PCA) for dimensionality reduction
- The first five principal components explain 39% of variance in both English and Spanish data
- Reducing the number of features has benefit compared to using the full feature set

Bonus: The Dimensions are Interpretable

Interpretation of principal components by examining the loadings and extremes for each dimensions

English	Spanish
1. Focus on speaker	1. Focus on speaker
2. Engaged/animated	2. Engaged/animated
3. Existence of shared understanding	3. Predictability
4. Intent to continue topic	4. Authority
5. Checking existence of shared understanding	5. Certainty

Pragmatic functions of English and Spanish dimensions

Failure Analysis: Baseline Models

- Source-ignoring baseline model's errors included:
 - Failure to lengthen vowels or vary speaking rate during uncertainty
 - Failure to change pitch at turn ends
- Direct-transfer baseline model's differences to reference included:
 - English utterances having more rising pitch endings
 - English being breathier in some areas
 - These differences may be due to English uptalk, which isn't common in in the Spanish data

Future Work

- Improvements, extensions to
 - Corpus
 - Representation of utterance prosody
 - Metric for similarity
 - Models for mapping cross-language prosody

Summary of Contributions

- A corpus with parallel utterances from dialog
- A representation of utterance prosody
- A metric for prosody-conveyed pragmatic similarity of utterances
- A reduced dimensionality representation of utterance prosody
- Hypotheses verified, from analysis of cross-language mapping modeling strategies
- Findings on English and Spanish prosody

Acknowledgments

- Professor Nigel Ward
- Emilia Rivas and Divette Marco
- Ann Lee, Benjamin Peloquin, and Justine Kao
- Meta, the National Science Foundation, and UTEP's University Research Institute

Towards a Model of the Mapping Between English and Spanish Prosody

by Jonathan Avila